Nonabelian Hodge theory and the decomposition theorem for 2-CY categories

Ben Davison University of Edinburgh

The BBDG decomposition theorem

Theorem (Beilinson-Bernstein-Deligne-Gabber)

Let $p: X \to Y$ be a projective morphism of complex algebraic varieties, with X smooth. Then

$$p_*\mathbb{Q}_X\cong\bigoplus_{i\in\mathbb{Z}}{}^\mathfrak{p}\mathcal{H}^i(p_*\mathbb{Q}_X)[-i]$$

and each perverse sheaf ${}^{\mathfrak{p}}\mathcal{H}^{i}(p_{*}\mathbb{Q}_{X})$ is semisimple.

- If X is singular, same theorem remains true, but with \mathbb{Q}_X replaced everywhere by $\mathcal{IC}_X(\mathbb{Q})$, the intersection complex, i.e. the intermediate extension of the constant perverse sheaf $\mathbb{Q}[\dim(X)]|_{X^{\mathrm{sm}}}$.
- For X smooth, defining

$$\mathfrak{P}^i\mathsf{H}(X,\mathbb{Q})\coloneqq\mathsf{H}(Y,{}^\mathfrak{p}\!\tau^{\leq i}p_*\mathbb{Q}_X)\subset\mathsf{H}(X,\mathbb{Q})$$

gives the perverse filtration of X with respect to p, with subquotients

$$\mathfrak{P}^i \mathsf{H}(X,\mathbb{Q})/\mathfrak{P}^{i-1} \mathsf{H}(X,\mathbb{Q}) \cong \mathsf{H}(Y,{}^{\mathfrak{p}}\mathcal{H}^i(p_*\mathbb{Q}_X)).$$

Saito's version

Given X a complex variety, Saito defines the category MHM(X) of mixed Hodge modules on X, along with faithful functor $MHM(X) \to Perv(X)$;

- So a MHM on X is a perverse sheaf \mathcal{F} on X along with some extra data. Most important part (for us) is the weight filtration $W_{\bullet}\mathcal{F}$.
- A MHM \mathcal{F} is pure of weight i if $Gr_j^W \mathcal{F} = 0$ for $i \neq j$.
- A complex $\mathcal{F} \in D^b(\mathsf{MHM}(X))$ is called *pure* if each $\mathcal{H}^i(\mathcal{F})$ is pure of weight i.
- The perverse sheaves $\mathbb{Q}_X[\dim(X)]$ on a smooth variety X (or $\mathcal{IC}_X(\mathbb{Q})$ on a general variety) have lifts to simple pure weight zero MHMs (at least if $\dim(X)$ even).

Theorem (Saito)

The category of pure weight n MHMs on a variety is semisimple. If $f: X \to Y$ is projective, $f_*: D^b(\mathsf{MHM}(X)) \to D^b(\mathsf{MHM}(Y))$ preserves pure objects. If $\mathcal{F} \in D^b(\mathsf{MHM}(Y))$ is pure, then $\mathcal{F} \cong \bigoplus_{i \in \mathbb{Z}} \mathcal{H}^i(\mathcal{F})[-i]$. \therefore If $\mathcal{G} \in D^b(\mathsf{MHM}(X))$ is pure, then $f_*\mathcal{G} \cong \bigoplus_{i \in \mathbb{Z}} \mathcal{H}^i(f_*\mathcal{G})[-i]$.

Higgs bundles

Throughout, C will denote a smooth projective complex curve of genus g.

Definition

A Higgs bundle on C is a pair $\tilde{\mathcal{F}}=(\mathcal{F},\eta)$, where \mathcal{F} is a locally free coherent sheaf on C, and $\eta\colon\mathcal{F}\to\mathcal{F}\otimes\omega_C$ is the Higgs field. The rank and degree of $\tilde{\mathcal{F}}$ is defined to be the rank and degree of \mathcal{F} .

- A morphism $\tilde{h} \colon \tilde{\mathcal{G}} \to \tilde{\mathcal{F}}$ is a morphism $h \colon \mathcal{G} \to \mathcal{F}$ commuting with the Higgs fields: $\eta_{\mathcal{F}} \circ h = (h \otimes \omega_{\mathcal{C}}) \circ \eta_{\mathcal{G}}$.
- We define the slope $\mu(\tilde{\mathcal{F}}) = \deg(\mathcal{F})/\mathrm{rank}(\mathcal{F})$. We call $\tilde{\mathcal{F}}$ semistable if $\mu(\tilde{\mathcal{G}}) \leq \mu(\tilde{\mathcal{F}})$ for all nonzero $\tilde{\mathcal{G}} \subsetneq \tilde{\mathcal{F}}$, and stable if the inequalities are strict.

Categorical structure

The category Higgs(C) is a 2-Calabi–Yau category. In particular, there are bifunctorial isomorphisms $\operatorname{Ext}^i(\tilde{\mathcal{F}},\tilde{\mathcal{G}})\cong\operatorname{Ext}^{2-i}(\tilde{\mathcal{G}},\tilde{\mathcal{F}})^\vee$.

Dolbeault moduli spaces

- Fix a curve C, and numbers r,d. We define $\mathfrak{M}^{\mathsf{Dol}}_{r,d}(C)$ to be the moduli stack of semistable rank r, degree d Higgs bundles on C, and $\mathcal{M}^{\mathsf{Dol}}_{r,d}(C)$ the coarse moduli space. Points of $\mathcal{M}^{\mathsf{Dol}}_{r,d}(C)$ correspond to polystable Higgs bundles.
- There is a canonical morphism $p \colon \mathfrak{M}^{\mathsf{Dol}}_{r,d}(\mathcal{C}) \to \mathcal{M}^{\mathsf{Dol}}_{r,d}(\mathcal{C})$ sending a semistable Higgs bundle to associated polystable Higgs bundle.
- If (r, d) = 1 then $\mathcal{M}^{\mathsf{Dol}}_{r, d}(C)$ is smooth, and $\mathfrak{M}^{\mathsf{Dol}}_{r, d}(C)$ is a \mathbb{C}^* gerbe over it (i.e. fibres of p are $\mathbb{B}\mathbb{C}^*$).
- We consider the *Hitchin map* h: $\mathcal{M}_{r,d}^{\mathsf{Dol}}(C) \to \Lambda_r := \prod_{i=1}^r \mathsf{H}^0(C, \omega_C^{\otimes i})$ recording the eigenvalues of the Higgs field: $\mathsf{h}((\mathcal{F}, \eta)) = (\mathsf{Tr}(\eta), \mathsf{Tr}(\eta^2), \dots, \mathsf{Tr}(\eta^r)).$
- The morphism h is projective, and so for all r, d, the complex $h_* \mathcal{IC}_{\mathcal{M}^{\mathsf{Dol}}_{r,d}(C)}(\mathbb{Q})$ splits, and the intersection cohomology $\mathsf{IC}(\mathcal{M}^{\mathsf{Dol}}_{r,d}(C))$ acquires a perverse filtration defined with respect to h:

$$\mathfrak{P}_{h}^{\textit{i}}\,\mathsf{IC}(\mathcal{M}^{\mathsf{Dol}}_{r,\textit{d}}(\mathcal{C})) \coloneqq \mathsf{H}(\Lambda_{r},{}^{\mathfrak{p}}\!\tau^{\leq \textit{i}}\,\mathtt{h}_{*}\,\mathcal{IC}_{\mathcal{M}^{\mathsf{Dol}}_{r,\textit{d}}(\mathcal{C})}(\mathbb{Q})).$$

The Betti side

Let Σ_g be a genus g compact Riemann surface, e.g. the underlying topological space of C_{an} . Let $\Sigma_g' = \Sigma_g \setminus \{c\}$ for some $c \in \Sigma_g$. Then we have the standard presentations

$$\pi_1(\Sigma_g) = \langle a_1, \dots, a_g, b_1, \dots, b_g | \prod_{i=1}^g (a_i, b_i) \rangle$$

$$\pi_1(\Sigma_g') = \langle a_1, \dots, a_g, b_1, \dots, b_g \rangle$$

- Let $\mathfrak{M}_{g,r,d}^{\mathsf{B}}$ be the stack of r-dimensional $\pi_1(\Sigma_g')$ -reps for which the action of $\prod_{i=1}^g (a_i,b_i)$ is multiplication by $\exp(2\pi id/r)$.
- So $\mathfrak{M}_{g,r,0}^{\mathsf{B}}$ is $\mathfrak{M}_r(\pi_1(\Sigma_g))$, the stack of r-dimensional $\mathbb{C}[\pi_1(\Sigma_g)]$ -modules.
- Let $\mathcal{M}_{g,r,d}^{\mathsf{B}}$ be the coarse moduli space: points correspond to semisimple $\pi_1(\Sigma_g')$ -modules such that $\prod_{i=1}^g (a_i,b_i)$ acts via multiplication by $\exp(2\pi id/r)$.
- If (r,d) = 1 then $\mathcal{M}_{g,r,d}^{\mathsf{B}}$ is a smooth variety, and $\mathfrak{M}_{g,r,d}^{\mathsf{B}}$ is a \mathbb{C}^* -gerbe over it.

Nonabelian Hodge theory

Theorem (Hitchin, Donaldson, Corlette, Simpson)

Fix C a smooth projective genus g curve. For all r,d there is a homeomorphism

$$\Psi \colon \mathcal{M}_{g,r,d}^{\mathsf{B}} \xrightarrow{\cong} \mathcal{M}_{r,d}^{\mathsf{Dol}}(C).$$

 \therefore there is an isomorphism $H(\Psi)$: $H(\mathcal{M}_{g,r,d}^{\mathsf{B}},\mathbb{Q}) \xrightarrow{\cong} H(\mathcal{M}_{r,d}^{\mathsf{Dol}}(C),\mathbb{Q})$

- If (r,d)=1 there is an isomorphism $\mathsf{H}(\mathfrak{M}_{g,r,d}^\mathsf{B},\mathbb{Q})\stackrel{\cong}{\to} \mathsf{H}(\mathfrak{M}_{r,d}^\mathsf{Dol}(\mathcal{C}),\mathbb{Q})$ since $\mathsf{H}(\mathfrak{M}_{g,r,d}^\mathsf{B},\mathbb{Q})\cong \mathsf{H}(\mathcal{M}_{g,r,d}^\mathsf{B},\mathbb{Q})\otimes \mathsf{H}(\mathsf{B}\,\mathbb{C}^*,\mathbb{Q})$ and similarly for Dolbeault side.
- For all r, d there is an isomorphism $IC(\mathcal{M}_{g,r,d}^{\mathsf{B}}) \cong IC(\mathcal{M}_{r,d}^{\mathsf{Dol}}(C))$ since intersection complex is a topological invariant.

Conjecture (P=W conjecture)

For r, d coprime, $H(\Psi)(W_{2i} H(\mathcal{M}_{g,r,d}^{\mathsf{B}}, \mathbb{Q}_{\mathsf{vir}}))) = \mathfrak{P}_{\mathsf{h}}^{i} H(\mathcal{M}_{r,d}^{\mathsf{Dol}}(C), \mathbb{Q}_{\mathsf{vir}}).$

NAHT for stacks...?

For ${\mathfrak M}$ a singular stack of objects in a 2CY category we define

$$\mathsf{H}^{\mathsf{BM}}(\mathfrak{M},\mathbb{Q})_{\mathsf{vir}} \coloneqq \mathsf{H}\Big(\mathfrak{M},\mathbb{D}\mathbb{Q}_{\mathfrak{M}} \otimes \mathbb{L}^{-\chi(\cdot,\cdot)/2})\Big) \cong \mathsf{H}_{c}(\mathfrak{M},\mathbb{Q}))^{\vee} \otimes \mathbb{L}^{-\chi(\cdot,\cdot)/2}$$

Define the stacky Hitchin map

$$\mathtt{h}_{\mathsf{St}} \colon \mathfrak{M}^{\mathsf{Dol}}_{r,d}(\mathcal{C}) o \Lambda_r \ (\mathcal{F}, \eta) \mapsto (\mathsf{Tr}(\eta), \mathsf{Tr}(\eta^2), \dots, \mathsf{Tr}(\eta^r))$$

"Conjecture"

- \exists nat. iso. $\mathsf{H}^\mathsf{BM}(\Psi) \colon \mathsf{H}^\mathsf{BM}(\mathfrak{M}^\mathsf{B}_{g,r,d},\mathbb{Q})_\mathsf{vir} \stackrel{\cong}{\to} \mathsf{H}^\mathsf{BM}(\mathfrak{M}^\mathsf{Dol}_{r,d}(C),\mathbb{Q})_\mathsf{vir}$
- $\bullet \ \mathsf{H}^{\mathsf{BM}}(\Psi) \ \mathsf{sends} \ \mathcal{W}_{2i}(\mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{B}}_{g,r,d},\mathbb{Q})_{\mathsf{vir}}) \ \mathsf{to} \ \mathfrak{P}^{i}_{\mathsf{h}_{\mathsf{St}}}\mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{Dol}}_{r,d}(\mathit{C}),\mathbb{Q})_{\mathsf{vir}}$

Three problems with the conjecture:

- $\textbf{ 0} \ \, \text{For perverse filtration, we have assumed that} \ \, h_{\mathsf{St},*} \, \mathbb{D}\mathbb{Q}_{\mathfrak{M}^{\mathsf{Dol}}_{r}(C),\mathsf{vir}} \, \, \mathsf{splits}.$
- ② We still need to construct $H^{BM}(\Psi)$.
- Conjecture is false!!

The case g = 0

• Let $\tilde{\mathcal{F}}=(\mathcal{F},\eta)$ be a semistable rank r degree zero Higgs bundle on \mathbb{P}^1 . Then $\mathcal{F}\cong \mathcal{O}_{\mathbb{P}^1}^{\oplus r}$ and $\eta=0$.

$$\mathfrak{M}^{\mathsf{Dol}}_{r,0}(\mathcal{C}) \overset{\cong}{\longrightarrow} \mathsf{pt} \, / \, \mathsf{GL}_r$$

$$\downarrow^{\mathtt{h}} \qquad \qquad \downarrow^{\mathtt{h}}$$

$$\Lambda_r \overset{\cong}{\longrightarrow} \mathsf{pt} \, .$$

Since h is the structure morphism, $\mathfrak{P}_{h}^{\bullet} H(\mathfrak{M}_{r,0}^{Dol}(C), \mathbb{Q})$ is the filtration by cohomological degree.

- ② $\pi_1(\mathbb{P}_1) = \langle 1 \rangle$ and so likewise $\mathfrak{M}_{g,r,0}^{\mathsf{B}} \cong \mathsf{pt} / \mathsf{GL}_r$. The MHS $\mathsf{H}(\mathsf{pt} / \mathsf{GL}_r, \mathbb{Q})$ is pure (Deligne), so the weight filtration is the filtration by cohomological degree.
- \therefore There is an isomorphism of stacks $\Psi \colon \mathfrak{M}_{g,r,0}^{\mathsf{B}} \cong \mathfrak{M}_{r,0}^{\mathsf{Dol}}(C)$. But: no halving of weight degrees!

$$\mathsf{H}(\Psi)\left(W_i(\mathsf{H}(\mathfrak{M}_{g,r,0}^\mathsf{B},\underline{\mathbb{Q}}))\right)=\mathfrak{P}_{\mathsf{h}_{\mathsf{S}\mathsf{t}}}^i\mathsf{H}(\mathfrak{M}_{r,0}^\mathsf{Dol}(C),\mathbb{Q}).$$

2CY categories

Examples of 2CY categories

- Higgs bundles on a smooth projective curve
- Categories of modules over (ordinary/deformed/multiplicative) preprojective algebras
- **①** Compactly supported coherent sheaves on a smooth surface S satisfying $\omega_S\cong \mathfrak{O}_S$
- Suznetsov components.
 - We restrict attention to stacks of objects $\mathfrak{M}_{\mathbb{C}}$ possessing good moduli spaces $p \colon \mathfrak{M}_{\mathbb{C}} \to \mathcal{M}_{\mathbb{C}}$ in the sense of Alper.
 - This means that in cases (1), (4), (5) we restrict attention to semistable objects.
 - In all cases apart from (5), the stacks $\mathfrak{M}_{\mathbb{C}}$ have known global quotient presentations.

The decomposition theorem for 2CY categories

Theorem (2CY decomposition theorem)

• Let $\mathfrak{M}_{\mathbb{C}}$ be an open substack of the stack of objects in a 2CY category \mathbb{C} , and assume that there is a good moduli space $p \colon \mathfrak{M}_{\mathbb{C}} \to \mathcal{M}_{\mathbb{C}}$. Then $\mathcal{H}^i(p_*\mathbb{D}\underline{\mathbb{Q}}_{\mathfrak{M}_{\mathbb{C}}, \mathrm{vir}})$ is pure of weight i, and vanishes for $i \notin 2\mathbb{Z}_{\geq 0}$.

Corollary

For ${\mathfrak C}$ a 2CY category from cases (1)-(4), the (pure) complex $p_*{\mathbb D}\underline{{\mathbb Q}}_{{\mathfrak M}_{{\mathfrak C}},{\rm vir}}$ splits, yielding the perverse filtration ${\mathfrak P}_p^{\bullet}\,{\sf H}^{\sf BM}({\mathfrak M}_{{\mathfrak C}},\underline{{\mathbb Q}}_{\sf vir})$.

Since $h_{\mathsf{St},*} \mathbb{D}\underline{\mathbb{Q}}_{\mathfrak{M}^{\mathsf{Dol}}_{r,d}(C),\mathsf{vir}} \cong h_* \, p_* \mathbb{D}\underline{\mathbb{Q}}_{\mathfrak{M}^{\mathsf{Dol}}_{r,d}(C),\mathsf{vir}}$ and h is projective, we deduce

Corollary

The complex $h_{St,*}\mathbb{D}\underline{\mathbb{Q}}_{\mathfrak{M}^{Dol}_{r,d}(C), vir}$ is pure, yielding the perverse filtration $\mathfrak{P}^{\bullet}_{h_{St}}$ $H^{BM}(\mathfrak{M}^{Dol}_{r,d}(C),\underline{\mathbb{Q}}_{vir})$. Problem 1 solved!

Solving problem 3: the "correct" SP=SW conjecture(s)

For p the morphism from the stack to the GIT quotient, there are filtrations

$$\mathfrak{P}^{\bullet}_{p}\,\mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{B}}_{g,r,0},\mathbb{Q}_{\mathsf{vir}}) \hspace{1cm} \mathfrak{P}^{\bullet}_{p}\,\mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{Dol}}_{r,0}(\mathit{C}),\mathbb{Q}_{\mathsf{vir}}).$$

Conjecture (SP=SW version 1)

 $\exists \text{ isomorphism } \mathfrak{P}^0_p \, \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{B}}_{g,r,0}, \mathbb{Q}_{\mathsf{vir}}) \xrightarrow{\cong} \mathfrak{P}^0_p \, \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{Dol}}_{r,0}(C), \mathbb{Q}_{\mathsf{vir}}) \text{ sending } \\ W_{2i} \mathfrak{P}^0_p \, \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{B}}_{g,r,0}, \mathbb{Q}_{\mathsf{vir}}) \text{ to } \mathfrak{P}^i_{\mathsf{h}_{\mathsf{St}}} \mathfrak{P}^0_p \, \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{Dol}}_{r,0}(C), \mathbb{Q}_{\mathsf{vir}})$

Conjecture (SP=SW version 2)

 $\exists \text{ isomorphism } \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{B}}_{g,r,0},\mathbb{Q}_{\mathsf{vir}}) \xrightarrow{\cong} \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{Dol}}_{r,0}(C),\mathbb{Q}_{\mathsf{vir}}) \text{ sending } \\ W_{2i}\mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{B}}_{g,r,0},\mathbb{Q}_{\mathsf{vir}}) \text{ to } \sum_{j+k=i} \mathfrak{P}^{j+2k}_{\mathsf{hst}} \mathfrak{P}^{2k}_{p} \mathsf{H}^{\mathsf{BM}}(\mathfrak{M}^{\mathsf{Dol}}_{r,0}(C),\mathbb{Q}_{\mathsf{vir}})$

Theorem

The SP=SW conjectures are true for $g \le 1$.

Étale neighbourhoods

Formality

For $\mathcal{F}_1, \ldots, \mathcal{F}_m$ a collection of simple objects in a 2CY category \mathcal{C} , the A_{∞} -Yoneda algebra $A = \operatorname{Ext}_{\infty}(\bigoplus_i \mathcal{F}_i, \bigoplus_j \mathcal{F}_i)$ is *formal*, i.e. up to isomorphism of A_{∞} algebras, it is an ordinary associative algebra. It follows that A is determined, up to iso, by the dimensions of the $\operatorname{Ext}^1(\mathcal{F}_i, \mathcal{F}_j)$.

Modular étale neighbourhoods

Let $\mathcal{F}_1, \ldots, \mathcal{F}_m$ be as above. Let $x \in \mathfrak{M}_{\mathbb{C}}$ represent the object $\bigoplus_i \mathcal{F}_i^{\oplus d_i}$. Define Q with vertices $\{\mathcal{F}_1, \ldots, \mathcal{F}_m\}$ such that \overline{Q} is the Ext quiver of the \mathcal{F}_i . Then there is a commutative diagram

with Cartesian squares, and étale horizontal maps.

Cohomological integrality

- Let $p \colon \mathfrak{M}_{\mathbb{C}} \to \mathcal{M}_{\mathbb{C}}$ be the morphism from the stack of objects in a 2CY category to its coarse moduli space. Let $s \colon \mathcal{M}_{\mathbb{C}}^{\times 2} \to \mathcal{M}_{\mathbb{C}}$ be the morphism taking a pair of polystable objects to their direct sum.
- Then $D^b(\mathsf{MHM}(\mathcal{M}_{\mathfrak{C}}))$ carries a convolution product

$$\mathcal{F} \boxtimes_{\oplus} \mathcal{G} := s_*(\mathcal{F} \boxtimes \mathcal{G})$$

ullet We say that $cohomological\ integrality\ holds$ for ${\mathcal C}$ if we can write

$$\textit{p}_* \mathbb{DQ}_{\mathfrak{M}_{\mathfrak{S}},\mathsf{vir}} \cong \mathsf{Sym}_{\boxtimes_{\oplus}} \left(\mathcal{BPS}_{\mathfrak{S}} \otimes \mathsf{H}(\mathsf{BC}^*,\mathbb{Q}) \right)$$

for some $\mathcal{BPS}_{\mathfrak{C}} \in \mathsf{MHM}(\mathcal{M}_{\mathfrak{C}})$.

Cohomological integrality implies

$$\mathsf{H}^\mathsf{BM}(\mathfrak{M}_{\mathfrak{C}},\mathbb{Q}_\mathsf{vir}) \cong \mathsf{Sym}(\mathsf{BPS}_{\mathfrak{C}} \otimes \mathsf{H}(\mathsf{BC}^*,\mathbb{Q}))$$

with

$$\mathsf{BPS}_{\mathfrak{C}} := \mathsf{H}(\mathcal{M}_{\mathfrak{C}}, \mathcal{BPS}_{\mathfrak{C}}).$$

BPS cohomology

Theorem

Cohomological integrality holds for Π_Q -mod. Moreover the BPS sheaves $\mathcal{BPS}_{\Pi_Q\text{-mod}}$ are pure, and the zeroth BPS cohomology $H^0(\mathcal{M}_{\mathbb{C}},\mathcal{BPS}_{\Pi_Q\text{-mod}})$ is the Kac–Moody Lie algebra associated to Q.

Combining with the modular étale nbhd theorem, purity of BPS sheaves implies the 2CY decomposition theorem.

Theorem

Cohomological integrality holds for $\mathcal{C}=\mathbb{C}[\pi_1(\Sigma_g)]$ -mod. Moreover the BPS cohomology satisfies

$$\chi_{\mathrm{wt}}(\mathsf{H}(\mathcal{M}_{\mathfrak{C}},\mathcal{BPS}_{\mathfrak{C},r})) = \chi_{\mathrm{wt}}(\mathsf{H}(\mathcal{M}_{g,r,1}^{\mathsf{B}}(\mathcal{C}),\mathbb{Q}_{\mathsf{vir}}))$$

Theorem (Kinjo, Koseki)

Let ${\mathfrak C}$ be the category of semistable degree zero Higgs bundles. Then cohomological integrality holds for ${\mathfrak C}$, and $h_* \mathcal{BPS}_{\mathfrak C} \cong h_* \mathbb Q_{\mathcal M^{Dol}_{r,1}(\mathcal C), \text{vir}}$.

Cohomological Hall algebras

We can equip $p_*\mathbb{DQ}_{\mathfrak{M}_{\mathfrak{S}},\mathsf{vir}}$ with a Hall algebra structure (for the tensor structure \boxtimes_{\oplus}), and the cohomological integrality isomorphism

$$p_*\mathbb{DQ}_{\mathfrak{M}_{\mathfrak{C}},\mathsf{vir}} \cong \mathsf{Sym}_{\boxtimes_{\oplus}}(\mathcal{BPS}_{\mathfrak{C}} \otimes \mathsf{H}(\mathsf{BC}^*,\mathbb{Q}))$$

becomes a PBW isomorphism. Applying $au^{\leq 0}$, we get the PBW isomorphism

$$\tau^{\leq 0} \textit{p}_* \mathbb{D}\mathbb{Q}_{\mathfrak{M}_\mathbb{C},\mathsf{vir}} \cong \mathsf{U}_\mathbb{C} \coloneqq \mathsf{Sym}_{\boxtimes_{\oplus}} \left(\mathcal{BPS}_\mathbb{C} \right)$$

of algebra objects in MHM($\mathcal{M}_{\mathbb{C}}$). Since $U_{\mathbb{C}}$ is pure, it is semisimple.

Trichotomy of generators

Let ρ be a simple object in \mathcal{C} . Either dim($\operatorname{Ext}^1(\mathcal{F},\mathcal{F})$)

- =0: then $\{\rho\}$ is a component of $\mathcal{M}_{\mathcal{C}}$ and $\mathbb{Q}_{\{\rho\}}$ is a summand of $U_{\mathcal{C}}$,
- =2: then $\Delta_n \mathcal{IC}_E(\mathbb{Q})$ is a summand of $U_{\mathbb{C}}$ for all $n \geq 1$, where E is the 2-dimensional component of $\mathcal{M}_{\mathbb{C}}$ containing ρ .
- >2: then $\mathcal{IC}_E(\mathbb{Q})$ is a summand of $U_{\mathbb{C}}$, where $E \subset \mathcal{M}_{\mathbb{C}}$ is the connected component containing ρ .

In each case these summands are primitive, i.e. generators of $U_{\ensuremath{\mathbb{C}}}.$

The NAHT isomorphism for BPS cohomology

- I conjecture that these are *all* the generators, and the algebra they generate is a Borcherds algebra, with the trichotomy corresponding to real, imaginary isotropic, and imaginary hyperbolic roots.
- For Higgs bundles, the trichotomy corresponds to $g=0,1,\geq 2$. So for $\mathcal H$ the category of semistable degree zero Higgs bundles on a curve with $g(C)\geq 2$, all roots expected to be hyperbolic: giving isomorphism in $\mathsf{MHM}(\mathcal M_{\mathcal H})$

$$\mathcal{BPS}_{\mathfrak{H}}\cong\operatorname{\mathsf{Free}}_{\mathsf{Lie}}\left(\mathcal{IC}_{\mathcal{M}_{\mathfrak{H}}}(\mathbb{Q})\right)$$

ullet Similarly for ${\mathfrak B}={\mathbb C}[\pi_1(\Sigma_g)]$ -mod with $g\geq 2$

$$\mathcal{BPS}_{\mathfrak{B}}\cong\mathsf{Free}_{\mathsf{Lie}}\left(\mathcal{IC}_{\mathcal{M}_{\mathfrak{B}}}(\mathbb{Q})\right)$$

• Intersection cohomology is a topological invariant, and NAHT correspondence gives diffeo $\mathcal{M}_{\mathcal{H}}\cong\mathcal{M}_{\mathcal{B}}$, so we expect isomorphisms of BPS cohomology

$$\mathsf{BPS}_{\mathfrak{H}} \cong \mathsf{Free}_{\mathsf{Lie}}(\mathsf{IC}(\mathcal{M}_{\mathfrak{H}})) \cong \mathsf{Free}_{\mathsf{Lie}}(\mathsf{IC}(\mathcal{M}_{\mathfrak{B}})) \cong \mathsf{BPS}_{\mathfrak{B}}$$

Ben Davison

The NAHT isomorphism for stacks

We put everything together to produce a NAHT iso. for BM homology of stacks. As on previous slide $\mathcal H$ is category of semistable degree zero Higgs bundles on genus g curve and $\mathcal B=\mathbb C[\pi_1(\Sigma_g)]$ -mod with $g\geq 2$.

 From previous slide we expect a canonical isomorphism of Borcherds algebras

$$\mathsf{BPS}_{\mathfrak{H}}\cong \mathsf{BPS}_{\mathfrak{B}}$$

• By cohomological integrality there are canonical isomorphisms for $\mathcal{C}=\mathcal{H},\mathcal{B}$

$$\mathsf{H}^\mathsf{BM}(\mathfrak{M}_\mathcal{C},\mathbb{Q})_\mathsf{vir} \cong \mathsf{Sym}\left(\mathsf{BPS}_\mathcal{C} \otimes \mathsf{H}(\mathsf{BC}^*,\mathbb{Q})\right)$$

Theorem

Combining these, there is a canonical NAHT isomorphism

$$\mathsf{H}^\mathsf{BM}(\mathfrak{M}_\mathfrak{H},\mathbb{Q})_\mathsf{vir} \cong \mathsf{H}^\mathsf{BM}(\mathfrak{M}_\mathfrak{B},\mathbb{Q})_\mathsf{vir}$$

By construction, the PS=WS conjecture is equivalent to the PI=WI conjecture, and (conjecturally) the P=W conjecture.